

Journal of Organometallic Chemistry 543 (1997) 47--56

Kohlenwasserstoffverbrückte Metallkomplexe, XXXVI¹ Nucleophile Addition von Carbonylmetallaten an koordinierte Ethen-, Benzol-, Cyclooctadienyl- und Cyclooctatrienyl-Liganden von kationischen Ruthenium-Komplexen

Stephan Hüffer, Kurt Polborn, Wolfgang Beck *

Institut für Anorganische Chemie der Ludwig-Maximilians-Universität München, Meiserstr. 1, 80333 München, Germany

Eingegangen 24 Mai 1996

Abstract

The addition of $[\operatorname{Re}(\operatorname{CO})_5]^-$, $[\operatorname{CpFe}(\operatorname{CO})_2]^-$ and $[\operatorname{Os}(\operatorname{CO})_4]^{2-}$ to the cationic ruthenium complexes $[(\eta^6-\operatorname{C}_6\operatorname{H}_6)(\operatorname{Me}_3\operatorname{P})_2\operatorname{Ru}(\eta^2-\operatorname{C}_2\operatorname{H}_4)]^{2+}$, $[(\eta^6-\operatorname{C}_6\operatorname{H}_6)_2\operatorname{Ru}]^{2+}$, $[(1,5-\operatorname{COD})\operatorname{Ru}(\eta^7-\operatorname{C}_8\operatorname{H}_9)]^+$ and $[(\eta^6-\operatorname{C}_8\operatorname{H}_{10})\operatorname{Ru}(\eta^5-\operatorname{C}_8\operatorname{H}_{11})]^+$ gives the hydrocarbon bridged complexes $[(\eta^6-\operatorname{C}_6\operatorname{H}_6)(\operatorname{Me}_3\operatorname{P})_2\operatorname{Ru}(\mu-\eta^1:\eta^1-\operatorname{C}_2\operatorname{H}_4)\operatorname{Re}(\operatorname{CO})_5]^+$, $\{[(\eta^6-\operatorname{C}_6\operatorname{H}_6)(\operatorname{Me}_3\operatorname{P})_2\operatorname{Ru}(\mu-\eta^1:\eta^1-\operatorname{C}_2\operatorname{H}_4)]_2\operatorname{Os}(\operatorname{CO})_4]^{2+}$, $[(\eta^6-\operatorname{C}_6\operatorname{H}_6)\operatorname{Ru}(\mu-\eta^5:\eta^1-\operatorname{C}_6\operatorname{H}_6)\operatorname{ML}_n]^+$ (ML_n = Re(CO)₅, CpFe(CO)₂), $(\eta^4-\operatorname{C}_8\operatorname{H}_{12})\operatorname{Ru}(\mu-\eta^6:\eta^1-\operatorname{C}_8\operatorname{H}_9)\operatorname{ML}_n$ (ML_n = Re(CO)₅, CpFe(CO)₂) and the structurally characterized complex $(\eta^4-\operatorname{C}_8\operatorname{H}_{10})(\operatorname{OC})\operatorname{Ru}(\mu-\eta^4:\eta^1-\operatorname{C}_8\operatorname{H}_{11})\operatorname{Re}(\operatorname{CO})_5$ respectively. Substitution of chlorine by Re(CO)₅ or CpFe(CO)₂ was observed for the reaction of $[(\eta^6-\operatorname{C}_6\operatorname{H}_6)\operatorname{Ru}(\eta^6-\operatorname{C}_6\operatorname{H}_5\operatorname{Cl})]^{2+}$ with $[\operatorname{Re}(\operatorname{CO})_5]^-$ and $[\operatorname{CpFe}(\operatorname{CO})_2]^-$.

Zusammenfassung

Die Addition von $[\operatorname{Re}(\operatorname{CO})_5]^-$, $[\operatorname{CpFe}(\operatorname{CO})_2]^-$ und $[\operatorname{Os}(\operatorname{CO})_4]^2^-$ an die kationischen Ruthenium-Komplexe $[(\eta^6 - C_6H_6)(\operatorname{Me}_3P)_2\operatorname{Ru}(\eta^2 - C_2H_4)]^2^+$, $[(\eta^6 - C_6H_6)_2\operatorname{Ru}]^2^+$, $[(\eta^4 - C_8H_{12})\operatorname{Ru}(\eta^7 - C_8H_9)]^+$ und $[(\eta^6 - C_8H_{10})\operatorname{Ru}(\eta^5 - C_8H_{11})]^+$ liefert die kohlenwasserstoffverbrückten Komplexe $[(\eta^6 - C_6H_6)(\operatorname{Me}_3P)_2\operatorname{Ru}(\mu - \eta^1:\eta^1 - C_2H_4)\operatorname{Re}(\operatorname{CO})_5]^+$, $\{[(\eta^6 - C_6H_6)\operatorname{Ru}(\mu - \eta^1:\eta^1 - C_2H_4)]_2\operatorname{Os}(\operatorname{CO})_4\}^2^+$, $[(\eta^6 - C_6H_6)\operatorname{Ru}(\mu - \eta^5:\eta^1 - C_6H_6)\operatorname{ML}_n]^+$ (ML_n = Re(CO)₅, CpFe(CO)₂) sowie $(\eta^4 - C_8H_{12})\operatorname{Ru}(\mu - \eta^6:\eta^1 - C_8H_9)\operatorname{ML}_n$ (ML_n = Re(CO)₅, CpFe(CO)₂) und den durch Röntgenstrukturanalyse charakterisierten Komplex $(\eta^4 - C_8H_{10})(\operatorname{CO})\operatorname{Ru}(\mu - \eta^4:\eta^1 - C_8H_{11})\operatorname{Re}(\operatorname{CO})_5$. Die Reaktion von $[(\eta^6 - C_6H_6)\operatorname{Ru}(\eta^6 - C_6H_5\operatorname{CL})]^2^+$ mit $[\operatorname{Re}(\operatorname{CO})_5]^-$ und $[\operatorname{CpFe}(\operatorname{CO})_2]^-$ erfolgt unter Substitution von Chlor durch das Carbonylmetallat. © 1997 Elsevier Science S.A.

Keywords: Ruthenium; Rhenium; Osmium; Carbonyl; Hydrocarbon bridges; Iron

1. Einleitung

Die Addition von Carbonylmetallaten an ungesättigte Kohlenwasserstoff-Liganden von kationischen Komplexen hat sich als effektive Methode zum gezielten Aufbau von kohlenwasserstoffverbrückten Metallkomplexen erwiesen [2–4]. Im folgenden berichten wir über weitere Beispiele mit kationischen Ruthenium-Komplexen. 2. Reaktion von $[Re(CO)_5]^-$ und $[Os(CO)_4]^{2-}$ mit dem Dikation $[(\eta^6-C_6H_6)(Me_3P)_2Ru(\eta^2-C_2H_4)]^{2+}$

D er stabile A usgangskom plex $[(C_6H_6)Ru(PMe_3)_2(C_2H_4)][PF_6]_2$ wurde erstmals durch eine von Werner entwickelte Synthese zugänglich [5]. Auch die nucleophile Addition an dieses Dikation, die am Ethen oder Benzol erfolgen kann, wurde von Werner und Werner untersucht [5]. Bei einem vergleichbaren Monokation $[(C_6H_6)M(CH_3)(PMe_3)(C_2H_4)]^+$ (M = Ru, Os) erfolgt eine Addition des Nucleophils immer am Ethylen [6], wie es aufgrund der Regeln von Davies et al. [7] zu erwarten ist.

^{*} Corresponding author.

¹ XXXV. Mitteilung siehe Lit. [1].

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. *PII* S0022-328X(96)06634-X

S. Hüffer et al. / Journal of Organometallic Chemistry 543 (1997) 47-56

In diesem Zusammenhang sollte untersucht werden, ob mit den Carbonylmetallaten $\text{Re}(\text{CO})_5^-$, $\text{Os}(\text{CO})_4^{2-}$, bzw. $\text{Mn}(\text{CO})_5^-$ ein vergleichbares, nucleophiles Verhalten festzustellen ist.

Pentacarbonylrhenat(-I) wird entsprechend den DGM-Regeln am "offenen" Liganden unter Bildung des ethylenverbrückten Komplexes 1 addiert. Der gegenüber dem Benzolligand bevorzugte Angriff am Ethen ist auch dann zu beobachten, wenn dieses wie im monokationischen Komplex $[(\eta^6-C_6H_6)Ru(1-3:5,6-\eta^5-C_8H_{11})]^+$ Teil eines geschlossenen Liganden ist. Carbonylmetallate liefern die entsprechenden μ - η^3 : η^1 : η^1 verbrückten Komplexe [3].

1 fällt als luftstabiles gelbes Pulver an. In Lösung ist 1 nur mäßig stabil. NMR-spektroskopisch kann freies Trimethylphosphin und Benzol nachgewiesen werden. Ein zweifacher Angriff wurde nicht beobachtet.

Verglichen mit dem relativ weichen Carbonylmetallat $\text{Re}(\text{CO})_5^-$ stellt das Anion $\text{Mn}(\text{CO})_5^-$ ein härteres Nucleophil dar. Demzufolge hätte man wie z.B. mit NaOMe [5] einen Angriff am Benzol erwarten können. Die Reaktion verläuft auch bei tiefen Temperaturen unter Bildung von $\text{Mn}_2(\text{CO})_{10}$ sehr rasch; ein Beleg für die bevorzugte Redox-reaktion [2]. Das Dianion $Os(\text{CO})_4^2^-$ bildet dagegen in guter Ausbeute den gewünschten trinuclearen, ethylenverbrückten Komplex 2 (siehe Schema 1).

Im Carbonylbereich von 1 findet man das Bandenmuster für ein Rheniumpentacarbonylfragment. In gleicher Weise dient die a_1 -CO-Bande der Os(CO)₄⁻⁻ Einheit als Sonde zur Identifizierung von Verbindungen des Typs *cis*-Os(CO)₄R₂ [8]. Man erkennt im IR-Spektrum von **2** eine scharfe Bande bei 2112 cm⁻¹.

Die Zuordnung der Signale in den ¹H-, ¹³C- und ³¹P-NMR-Spektren (vgl. Sektion 5) erfolgte in Analogie zu den von Werner synthetisierten Komplexen [5].

3. Reaktionen von Carbonylmetallaten mit Bis(benzol)ruthenium-Dikationen

Die $[(Aromat)_2 M]^{2+}$ -Dikationen [9] (M = Fe, Ru, Os) sind nach kinetischen Messungen für die Reaktion von Phosphor-Nucleophilen extrem elektrophil [10]. Während in den Chrom- [10,11] und Mn-Triaden die Reaktivität nur geringfügig von Metall zu Metall variiert, erweist sich die Elektrophilie bei den π -Kohlenwasserstoff-Komplexen der Eisentriade als ausgesprochen metallabhängig. Die Reaktivität gegenüber Nucleophilen nimmt in der Reihe Fe \gg Ru > Os stark ab [10,12]. Zur Erklärung dieses Befundes wird die π -Rückbindung, die in umgekehrter Reihenfolge stark zunimmt, herangezogen [13].

Neben der nucleophilen Addition besteht bei Halogen-Aromaten-Metallkomplexen noch die Möglichkeit der Substitution. Diese Reaktionen verlaufen, wie anhand der Umsetzungen $C_6H_5ClCr(CO)_3$ mit NaOMe belegt wurde, nach dem klassischen S_n Ar-Mechanismus

Schema 2.

[14,15]. Dabei ist die Reaktivität gegenüber freiem Chlorbenzol um den Faktor 2000 erhöht. Nach Arbeiten von Heppert [16] und Hunter [15] liefert die Umsetzung von $(C_6H_5Cl)Cr(CO)_3$ mit verschiedenen Carbonylmetallaten, wie das auch in unserem Arbeitskreis verwendete $[(C_6H_5Cl)Mn(CO)_3]^+$ [17,18] und $[CpFe(C_6H_5Cl)]^+$ [19,20], unter Chlorid-Substitution benzolverbrückte, bimetallische Komplexe. Der Chlorbenzolkomplex $[(C_6H_5Cl)Ru(C_6H_6)]^{2+}$ ist der nucleophilen Substitution gut zugänglich und bildet in Methanol quantitativ den entsprechenden Anisolkomplex [21].

3.1. Synthese der Cyclohexadienyl-verbrückten Komplexe 3 und 4

Die Carbonylmetallate $[\text{Re}(\text{CO})_5]^-$ und $[\text{CpFe}(\text{CO})_2]^-$ reagieren mit einer äquimolaren Menge $[(\text{C}_6\text{H}_6)_2\text{Ru}]^{2+}$ unter Addition am Ring und Bildung der μ - η^5 : η^1 -Cyclohexadienyl-verbrückten Kationen **3** und **4** (siehe Schema 2).

Setzt man **3** mit einem weiteren Äquivalent $\text{Re}(\text{CO})_5^$ um, so kann nicht der gewünschte trimetallische Neutralkomplex nachgewiesen werden. Statt dessen beobachtet man die Zersetzung von **3** unter Eliminierung von $\text{Re}_2(\text{CO})_{10}$. Die erwartete Zweifachaddition, die mit organischen Nucleophilen [22,23] gelingt, erfolgt hier nicht.

Die kationischen, binuclearen Komplexe **3** und **4** sind in Methylenchlorid gut löslich, zersetzen sich aber ab 0°C merklich. Die Abtrennung von als Nebenprodukt gebildetem $\text{Re}_2(\text{CO})_{10}$ bzw. $[\text{CpFe}(\text{CO})_2]_2$, gelingt durch mehrmaliges Umfällen aus CH_2Cl_2 -Ether. Bei der entsprechenden Umsetzung mit dem Bis(benzol)eisen-Dikation konnten keine kohlenwasserstoffverbrückten Komplexe isoliert werden. Die fast quantitative Bildung von $\text{Re}_2(\text{CO})_{10}$ deutet auf den bevorzugten Redox-Prozess hin. 3.2. Reaktion von Carbonylmetallaten mit dem kationischen Komplex $[(\eta^6 - C_6 H_5 Cl)Ru(\eta^6 - C_6 H_6)]^{2+}$

Bei der Umsetzung mit einem Äquivalent Na[Re(CO)₅] erkennt man bei einer Temperatur von -50 °C zunächst eine a_1 -CO-Bande bei 2127 cm⁻¹. Erhöht man die Temperatur langsam auf 10 °C, so beobachtet man im IR-Spektrum das Anwachsen einer Bande bei 2152 cm⁻¹. Nach 10 min Rühren bei Raumtemperatur wird praktisch nur noch die a_1 -Bande von 6 bei 2152 cm⁻¹ gefunden. Dieser Sachverhalt spricht für die nucleophile Substitution des Halogens durch die Carbonylmetallate Re(CO)₅⁻ und CpFe(CO)₂⁻ nach einem Additions-Eliminierungsmechanismus [14,15].

Durch Addition am Halogen-Aromatenkomplex wird zunächst ein labiler, aber faßbarer μ - η^5 : η^1 -verbrückter Komplex **5** erhalten (Schema 3). Dieser Schritt ist reversibel, wie das fluktuierende Verhalten dieses sowie vergleichbarer Systeme [17,19] zeigt.

Das ortho-Additions-Produkt 5 konnte bei tiefen Temperaturen isoliert und eindeutig charakterisiert werden. Die thermodynamische Stabilität des ortho-Adduktes 5 ist vermutlich größer als die der anderen möglichen Isomeren. Bei erhöhter Temperatur besteht für das im Gleichgewicht befindliche Ipso-Addukt die Möglichkeit, gemäß oben stehender Formulierung, ein Chloridion als Abgangsgruppe zu eliminieren.

Zu einem vergleichbaren Ergebnis kamen Pauson und Segal für die Reaktionen verschiedener, organischer Nucleophile mit $[(C_6H_5Cl)Mn(CO)_3]^+$. Je nach eingesetztem Nucleophil bleibt die Reaktion auf der Stufe des Additionsproduktes stehen (z.B. Ph⁻) [24] bzw. schreitet zum Substitutionsprodukt fort [25]. Ein Additions-Eliminierungsmechanismus wurde auch für das System $(C_6H_5Cl)Cr(CO)_3$ -Carbanion formuliert [26].

Durch die Umsetzung von 6 mit einem weiteren Äquivalent $[Re(CO)_5]^-$ sollte versucht werden, einen

Schema 3.

trinuclearen Komplex zu synthetisieren, bei welchem zwei Kohlenwasserstoff-Brücken mit unterschiedlicher Haptizität (η^6 , η^5) an das Zentralatom gebunden sind. Hierzu wurde die gelbe Lösung von **6** in THF bei -70 °C mit Na[Re(CO)₅] umgesetzt.

Die entstehende orangerote Lösung weist im Carbonylbereich zwei a₁-Banden (2148 cm⁻¹, 2124 cm⁻¹) auf. Die NMR-spektroskopische Untersuchung zeigt jedoch, daß der Angriff des Carbonylmetallats mit geringer Regioselektivität erfolgt. Es wird sowohl der Angriff am unsubstituierten Benzol-Liganden, als auch am bereits metallierten Ring beobachtet. Die Trennung blieb aufgrund der Zersetzlichkeit der Produkte ohne Erfolg. Von Weidmann wurde in analoger Weise versucht, durch Umsetzung von $[\text{Re}(\text{CO})_5]^-$ mit $[(\text{CO})_3\text{Mn}(\mu-\eta^6:\eta^1-\text{C}_6\text{H}_5)\text{Re}(\text{CO})_5]^+$ [27] den trinuclearen Komplex $\{(\text{CO})_3\text{Mn}(\mu-\eta^5:\eta^1:\eta^1-\text{C}_6\text{H}_5)[\text{Re}(\text{CO})_5]_2\}$ zu synthetisieren. Eine Isolierung gelang auch in diesem Fall nicht.

Die IR-Daten von 3 bis 7 entsprechen im Carbonylbereich den Erwartungen. Die Ladung der Komplexe beeinflußt die Lage der CO-Absorptionen nur geringfügig. Die a_1 -Bande von 3 liegt, wie bei einem kohlenwasserstoffverbrückten Neutralkomplex, bei 2125 cm⁻¹. Stärker beeinflußt wird sie durch den Hybridisierungsgrad des benachbarten Kohlenstoffatoms. So beobachtet man für die Rheniumpentacarbonylgruppe in 6 eine Verschiebung um $20 \,\mathrm{cm}^{-1}$ nach größeren Wellenzahlen. Dieser Sachverhalt kann der verminderten Donorfähigkeit des sp²-Kohlenstoffatoms und der damit einhergehenden schwächeren dativen Rückbindung Re-CO zugeschrieben werden. Obiger Trend wird durch die Gegenüberstellung der Absorptionslagen der beiden Banden des CpFe(CO)₂-Fragments in den Verbindungen 4 and 7 weiter bestätigt. Der hypsochrome Shift beim Übergang sp³-sp² beträgt hier sogar $30 \,\mathrm{cm}^{-1}$. Ein vergleichbarer Effekt wurde von Niemer beschrieben [19]. Die bevorzugte exo-Stellung des Nucleophils am Cyclohexadienyl-Ligand kann als gesichert gelten, da in 3 und 4 eine C-H-Streckschwingungsabsorption zwischen 2750 und $2800 \,\mathrm{cm}^{-1}$ fehlt. Ein exo-ständiges H-Atom weist typischerweise [28,29] eine Bande in diesem Bereich auf.

Im ¹H-NMR-Spektrum von **3** und **4** sind bei Raumtemperatur die Signale für das Cyclohexadienyl-System stark verbreitert. Bei -60 °C erscheinen die Protonen des ABB'CC'D-Spin-Systems hingegen gut aufgelöst. Dies spricht für ein fluktuierendes Verhalten, das für (CO)₃Mn(μ - η^1 : η^5 -C₆H₅)Re(CO)₅ bewiesen wurde [19]. Die Koaleszenztemperatur konnte nicht ermittelt werden, da für die Aufnahme von NMR-Spektren lediglich CD₂Cl₂ geeignet ist. Sie liegt vermutlich um 60 °C. Die Koaleszenztemperatur liegt deutlich höher als für den vergleichbaren Mangantricarbonyl-Komplex. Dies ist aufgrund der positiven Ladung von **3** verständlich, wenn man als Mechanismus der Fluktuation die reversible Bildung eines Kontaktionenpaares annimmt. Am Koaleszenzpunkt befände sich dann das Re(CO)₅⁻-Ion im zeitlichen Mittel über dem Benzolring, vergleichbar einem zweikernigen Tripeldecker-Komplex, wie [(CpV)₂(μ - η ⁶-C₆H₆)] [30] oder [(Mes)₃Cr₂ [31].

Verbindung 5 unterscheidet sich von 3 durch den Ersatz eines ortho-Wasserstoffatoms durch Chlor und weist im ¹H-NMR-Spektrum dementsprechend fünf Signale zwischen 4.3 ppm und 6.8 ppm auf. Auch bei diesem Komplex findet man ähnliche ³J-Kopplungskonstanten, so daß 3-H und 4-H als Pseudotripletts erscheinen. Selbst bei tiefen Temperaturen erfolgt in Lösung die Weiterreaktion zur Verbindung 6. Als Konsequenz findet man stets Spuren dieser Verbindung im Spektrum.

Der μ - η^6 : η^1 -verknüpfte Komplex 6 zeigt erwartungsgemäß keinerlei fluktuierendes Verhalten und erweist sich selbst in Aceton als ausgesprochen stabile Spezies. Der zweifach positiven Ladung ist es zuzuschreiben, daß sich die chemische Verschiebung der Signale im Bereich eines unkoordinierten Aromaten bewegen. Bei 7.12 ppm beobachtet man den unsubstituierten Benzolring.

Im ¹³C-NMR-Spektrum findet man für 6 neben der äquatorialen Carbonylgruppe des Rheniumpentacarbonyls bei 181.9 ppm fünf weitere Signale. Ein intensives Signal bei 94.7 ppm ist dem unsubstituierten Benzol, die vier übrigen Signale zwischen 92 und 108 ppm sind dem substituierten Benzol zuzuordnen.

Die Zuordnung der Signale erfolgt in Analogie zur gut untersuchten Verbindung [CpFe(C_6H_5)Re(CO)₅]⁺, von der ein ¹H-¹³C-shift-korreliertes Spektrum vorliegt [19,32]. Komplex **3** zeigt im ¹³C-NMR-Spektrum bei Raumtemperatur nur sehr schwache und verbreiterte Signale für den Hexadienylliganden, während man den Benzolliganden und die CO-Signale deutlich beobachten kann. Dagegen sind im Tieftemperatur-¹³C-NMR-Spektrum von **3** die Signale des Dienylsystems gut zu erkennen. Dies ist ein weiterer Beleg für das fluktuierende Verhalten des Hexadienylsystems.

4. Addition von CarbonyImetallaten an die Kationen $[(1,5-(COD)Ru(\eta^7-C_8H_9)]^+$ und $[(\eta^6-C_8H_{10})Ru(\eta^5-C_8H_{11})]^+$

Ausgangsverbindung für die oben genannten Kationen ist der Neutralkomplex [(1,5-COD)Ru(η^6 -C₈H₁₀)], der nach Lit. [33,34] hergestellt wurde. (Siehe Lit. [35] weitere Methoden zur Darstellung dieses Komplexes). Aus diesem Komplex wurde über den Bis(dienyl)-Komplex [(η^5 -C₈H₁₁)₂Ru] [33] mit C₇H₇BF₄ das Kation [(η^6 -C₈H₁₀)Ru(η^5 -C₈H₁₁)]⁺ erzeugt. Der unseres Wissens bisher unbekannte kationische Homotropylium-Komplex **8** wurde in Anlehnung an das von Müller und

Schmitt [36] beschriebene Kation [(1,5-COD)Ru(η^7 -C₇H₇)] durch Hydridabstraktion mit C₇H₇BF₄ aus (1,5-COD)Ru(η^6 -C₈H₁₀) [33,34] erhalten.

Mit $\text{Re}(\text{CO})_5^-$ reagiert **8**, wie NMR-spektroskopisch belegt, zum gelben, dinuclearen Komplex **9**. Diese Beobachtung ist der literaturbekannten Umsetzung von $[(C_8H_{12})\text{Ru}(\eta^7-C_7H_7)]^+$ mit organischen Nucleophilen an die Seitu zu stellen [36]. Auch hierbei fällt dem COD-Liganden lediglich die Rolle eines "Beobachters" zu.

Erwartungsgemäß ist das reaktive Homotropyliumsystem mit seiner höheren positiven Ladungsdichte Ziel des nucleophilen Angriffs. **9** ist unter Sauerstoff-Ausschluß in Pentan einige Zeit stabil, zersetzt sich aber in Methylenchlorid unter Abspaltung von COD, $\text{Re}_2(\text{CO})_{10}$ und weiteren nicht identifizierten Zersetzungsprodukten. Der mit CpFe $(\text{CO})_2^-$ erhaltene Komplex **10** ist nur bei tiefen Temperaturen stabil (Schema 4).

Im Gegensatz zum Kation $[(\eta^6-C_7H_8)Ru(\eta^5-C_7H_9)]^+$, das entsprechend den Regeln von Davies et al. [7] mit BH₄⁻ sowie organischen Nucleophilen den Bis(dienyl)Komplex liefert [36], ist mit dem homologen Achtring Kation $[(\eta^6-C_8H_{10})Ru(\eta^5-C_8H_{11})]^+$ und Carbonylmetallaten kein entsprechendes Additionprodukt

Schema 5.

nachzuweisen. Man erhält in guter Ausbeute den μ - η^4 : η^1 -verbrückten Komplex 11 (Schema 5).

11 ist ein Umlagerungsprodukt. Wir vermuten, daß primär das zentrale Kohlenstoffatom des Dienylliganden mit dem Carbonylmetallat in Wechselwirkung tritt. Beispiele für diesen Angriffstyp an Dienylsysteme sind in der Literatur zu finden. Dabei handelt es sich um relativ elektronenreiche Kationen, wie z.B. $[CpCoC_7H_9]^+$ [37] oder $[(\eta^4-C_6H_8)Fe(CO)(\eta^5-C_7H_9)]^+$ [38]. Triebkraft der Umlagerung, die über einen 1,3-H-Shift verlaufen könnte, ist wahrscheinlich die Ausbildung der stabilen 1,5-COD-Wanne. Das sterisch anspruchsvolle Re(CO)₅-Fragment nimmt so in exo-Position einen möglichst großen Abstand zum Zentralatom ein.

Aus 11 entsteht in Pentan-Lösung auch bei tiefen Temperaturen — der viel stabilere Ruthenium-Carbonylkomplex 12 durch intermolekulare CO-Übertragung. Dabei induziert die Koordination von CO einen elektrocyclischen Ringschluß am Rutheniumatom.

Derartige Reaktionen unter Bildung eines bicycli-

Tabelle 1 Röntgenographische Daten von **12**^a

Formel	$C_{22}H_{21}O_6ReRu$
Molare Masse	668.66
Temperatur (k)	293(2)
Wellenlänge (Å)	0.71073
Kristallsystem	Triklin
Raumgruppe	$P\overline{1}$
Einheitszelle	$a = 6.796(2)$ Å, $\alpha = 98.34(2)^{\circ}$
	$b = 10.708(3)$ Å, $\beta = 93.24(2)^{\circ}$
	$c = 15.882(5)$ Å, $\gamma = 108.04(2)^{\circ}$
Volumen	1081.0(6) Å ³
Ζ	2
Dichte (ber.) (Mgm^{-3})	2.054
Absorptionskoeffizient	6.328
(mm^{-1})	
F(000)	640
Kristallgröße (mm ³)	$0.27 \times 0.20 \times 0.07$
20 Bereich (°)	4.06-45.94
hkl-Bereich	$-7 \le h \le 7, -11 \le k \le 11, 0 \le l \le 17$
Gemessene Reflexe	3149
Unabhängige Reflexe	3019 (R(int) = 0.0114)
Absorptionskorrektur	Semiempirisch
Max./min. Transmission	0.9995/0.4959
Verfeinerung	Full-matrix least-squares mit F^2
Anzahl Parameter	271
Endgültige R-Indizes	R1 = 0.0218, wR2 = 0.0543
$(I > 2\sigma(I))$	
R-Indizes (alle Daten)	$R1 = 0.0244, \ sR2 = 0.0556$
Max./min. Restelek-	0.374 / -0.572
tronendichte ($e Å^{-3}$)	

^a Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 405356, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Tabelle 2 Atomkoordinaten (×10⁴) und äquivalente isotrope thermische Parameter (Å² ×10³) von 12

	x	У	Ζ	$U_{ m eq}$
$\overline{\text{Re}(1)}$	938(1)	- 857(1)	3444(1)	49(1)
Ru(1)	-2418(1)	- 5938(1)	2040(1)	56(1)
O(1)	5227(7)	- 306(5)	2709(3)	86(1)
O(2)	2903(7)	-1326(4)	5142(3)	72(1)
O(3)	-928(7)	- 550(5)	1684(3)	82(1)
O(4)	- 3498(6)	- 1675(4)	4062(3)	73(1)
O(5)	1823(7)	2128(4)	4166(3)	79(1)
O(14)	-6535(7)	- 7989(5)	2203(3)	95(2)
C(1)	3686(8)	-513(6)	2978(4)	59(1)
C(2)	2178(8)	- 1182(5)	4524(4)	54(1)
C(3)	- 265(8)	- 659(6)	2315(4)	59(1)
C(4)	-1867(9)	- 1379(5)	3844(4)	55(1)
C(5)	1505(8)	1030(6)	3898(3)	55(1)
C(6)	258(8)	- 3082(5)	2849(3)	53(1)
C(7)	-1972(8)	- 3760(5)	2514(3)	51(1)
C(8)	- 3548(8)	- 4510(5)	2929(4)	58(1)
C(9)	- 3397(10)	- 4726(7)	3842(4)	74(2)
C(10)	-2719(11)	- 5908(7)	3991(5)	84(2)
C(11)	- 1407(10)	-6291(6)	3338(5)	77(2)
C(12)	268(9)	- 5412(6)	3054(5)	72(2)
C(13)	1059(8)	- 3917(6)	3412(4)	68(2)
C(14)	- 4976(10)	- 7207(6)	2174(4)	67(2)
C(15)	- 1459(11)	- 5277(7)	860(4)	80(2)
C(16)	- 228(11)	-6012(7)	1110(5)	91(2)
C(17)	-1330(11)	-7347(7)	1188(6)	93(2)
C(18)	- 3055(13)	- 8155(8)	533(6)	110(3)
C(19)	- 2495(18)	- 8344(10)	- 423(7)	145(5)
C(20)	- 3906(16)	- 7585(12)	-653(6)	149(5)
C(21)	-4462(12)	- 7332(9)	263(5)	106(3)
C(22)	- 3643(11)	- 5910(7)	725(4)	80(2)

schen Dienliganden am Ruthenium sind bekannt [39]. So reagiert eine Lösung von $(C_8H_{12})Ru(\eta^6-C_8H_{10})$ in Hexan mit CO bei Raumtemperatur unter Bildung von $(C_8H_{12})Ru(CO)(\eta^4-C_8H_{10})$.

Der Versuch, 11 gezielt durch Einleiten von CO in eine Pentanlösung von 10 herzustellen, blieb erfolglos.

Tabelle 3					
Ausgewählte	Bindungslängen	und	Winkel	von 12	

Bindungslängen (pn	ı)		
Re-C(6)	2.323(5)	C(11)–C(12)	1.379(9)
Ru–C(14)	1.892(6)	C(15)-C(22)	1.417(9)
Ru-C(7)	2.264(5)	C(16)–C(17)	1.421(10)
Ru–C(12)	2.239(6)	C(15)-C(16)	1.392(10)
Ru-C(15)	2.161(6)	C(22)–C(21)	1.507(10)
Ru-C(16)	2.166(6)	C(20)–C(21)	1.531(11)
Ru-C(17)	2.205(7)	C(19)-C(20)	1.50(2)
Ru-C(22)	2.211(7)	C(19)-C(18)	1.585(12)
C(7)C(8)	1.389(7)	C(18)–C(21)	1.568(13)
Bindungswinkel (°)			
C(13)-C(6)-C(7)	111.2(4)	C(15)-C(16)-C(17)	115.2(7)
C(6)-C(7)-C(8)	127.8(5)	C(21)-C(18)-C(19)	88.8(8)
C(7)-C(8)-C(9)	127.0(5)	C(19)-C(20)-C(21)	93.5(10)
C(12)-C(13)-C(6)	113.2(5)	C(20)-C(21)-C(22)	116.3(7)

Die Isomerisierung des 1,3,5-Cyclooctatriens zum Bicyclo [4.2.0]octa-1,3-dien an einem Metallfragment wurde von Fischer et al. [40] und Wilkinson [41] schon vor längerer Zeit beschrieben. Die Zuordnung der NMR-Signale von 9 und 10 (Sektion 5) erfolgte durch Vergleich mit denen ähnlicher Verbindungen [36] sowie mittels eines ${}^{1}H-{}^{13}C$ -korrelliertes COSY-Spektrums.

4.1. Kristallstrukturanalyse von 12 (Tabelle 1–3)

Fahlgelbe Kristalle von 12, welche zur röntgenographischen Untersuchung geeignet sind, wurden aus einer gesättigten Pentanlösung durch Abkühlen auf -20 °C nach drei Tagen erhalten.

Die Kristallstrukturanalyse (Abb. 1) zeigt für das Ruthenium-Atom nahezu die gleiche Ligandensphäre, wie in Fe(CO)(η^4 -C₆H₈)(μ - η^1 : η^4 -C₇H₉)Re(CO)₅ [4].

Beide Liganden liegen in einer Wannenkonformation vor. Der 1,5-COD-Ring ist in exo-Stellung mit einer Rheniumpentacarbonyleinheit verknüpft.

Abb. 1. Struktur von 12 im Kristall.

Die Re–C-Bindungslänge (231(1) pm) stimmt mit Literaturwerten für eine Re–C- σ -Bindung überein [2]. Das sterisch anspruchsvolle Re(CO)₅-Fragment bewirkt bei den benachbarten sp²-Kohlenstoffatomen eine Aufweitung der C–C–C-Winkel auf 127° and C-7 bzw. 128° an C-8.

Der 1,5-COD-Ligand ist über die vier sp²-hybridisierten Kohlenstoffe erwartungsgemäß sehr gleichmäßig (225(1)-227(1)pm) an das Ruthenium koordiniert. Für die C-C-Bindungsabstände der olefinischen Doppelbindungen in COD wurden 139(2) pm (C8-C9) und 140(2) pm (C11-C12) ermittelt. Sie sind wie erwartet länger, als es einer reinen Doppelbindung entspricht und mit Literaturwerten vergleichbar [42]. Das konjugierte 1,3-Diensystem des Bicyclus weist weniger gleichmäßige Bindungsabstände auf [43]. Die beiden zentralen Kohlenstoffatome befinden sich mit 216(2) pm um durchschnittlich 6 pm näher am Ruthenium, als die beiden terminalen C-Atome. Der Bicyclus ist stark verzerrt. Die C-C-Bindungsabstände im exoständigen Vierring variieren zwischen 148(4) pm und 162(3) pm.

5. Experimenteller Teil

Alle Reaktionen wurden unter Argon mit sorgfältig getrockneten Lösungsmitteln durchgeführt. Zersetzungspunkte (nicht korrigiert): Schmelzpunktapparat der Firma Büchi (Typ 5). IR: Perkin Elmer 841. NMR: Jeol EX 400. Elementaranalysen: Heraeus VT und CHN– O-Rapid. Die Ausgangsverbindungen Re(CO)₅Na [44], Na₂[Os(CO)₄] [45], Na[CpFe(CO)₂] [46], [(PMe₃)₂(η^6 -C₆H₆)Ru(η^2 -C₂H₄)][PF₆]₂ [5] [(C₆H₆)₂Ru][BF₄]₂ [21], [(C ₆H ₆)R u(C ₆H ₅C1)][B F₄]₂ [21], [(η^6 -C₈H₁₀)Ru(COD)] [33], [(η^5 -C₈H₁₁)Ru(η^6 -C₈H₁₀)]BF₄ [33] wurden nach Literaturangaben dargestellt.

5.1. $[(\eta^{6}-C_{6}H_{6})Ru(PMe_{3})_{2}(\mu-\eta^{1}:\eta^{1}-C_{2}H_{4}Re-(CO)_{5}]PF_{6}(1)$

100 mg (0.15 mmol) $[(PMe_3)_2(\eta^6-C_6H_6)Ru(\eta^2-C_2H_4)][PF_6]_2$ werden in 5 ml THF suspendiert und bei -78 °C unter Rühren mit einer Lösung von Na[Re(CO)_5] versetzt, welche durch Na-Hg-Reduktion in 5 ml THF aus 65.2 mg (0.1 mmol) Re₂(CO)₁₀ erhalten wurde. Die zunächst ockerfarbene Suspension verfärbt sich gelb und nach 45 min bei -70 °C erhält man eine klare Lösung. Es wird auf -10 °C aufgetaut und das Lösungsmittel im Vakuum entfernt. Aus dem gelben Rückstand wird durch mehrmaliges Digerieren mit Pentan (dreimal mit je 5 ml) Re₂(CO)₁₀ herausgelöst. Anschließend löst man den Niederschlag in 2 ml Aceton und zentrifugiert vom unlöslichen NaPF₆ ab. Den Überstand versetzt man mit 10 ml Hexan und wiederholt mit dem Niederschlag obige Prozedur noch einmal. **1** kann so als analysenreines gelbes Pulver isoliert werden. Ausbeute: 81 mg (66%); Zersetzung ab 140 °C. IR (Nujol, cm⁻¹): 2118 m, 2045 m, 1998 vs, 1980 s, 1970 s, 1957 s, 1892 w. ¹H-NMR (CD₃NO₂): $\delta = 1.46$ ppm (t, PMe₃, $J_{P-H} = 4.36$ Hz); 1.53 (m, CH₂Re); 2.18 (m, CH₂Ru); 5.72 (s, C₆H₆). ¹³C-NMR (CD₃NO₂): $\delta =$ 20.54 ppm (t, PMe₃, $J_{C-P} = 17.50$ Hz); 95.48 (s, C₆H₆). ³¹P-NMR (CD₃NO₂): $\delta = 6.09$ ppm (d, $J_{P-P} =$ 2.96 Hz). Anal. Gef.: C, 27.38; H, 3.50. C₁₉H₂₈F₆P₃O₅ReRu. Ber.: C, 27.47; H, 3.40%. Molmasse: 830.62.

5.2. $[(PMe_3)_2(\eta^6 - C_6H_6)Ru_2(\mu - \eta^1 : \eta^1 - C_2H_4)_2Os-(CO)_4][PF_6]_2$ (2)

In Analogie zur Darstellung von 1 werden 201 mg (0.32 mmol) [(PMe₃)₂(η^{6} -C₆H₆)Ru(η^{2} -C₂H₄)][PF₆]₂ mit 56 mg (0.16 mmol) Na₂[Os(CO)₄] in 13 ml THF zur Reaktion gebracht. Man rührt bei -78 °C 2 h lang und taut die beigefarbene Suspension auf -10 °C auf. Nach dem Entfernen des Lösungsmittels wird der Rückstand zweimal mit 5 ml Ether gewaschen, in 3 ml Aceton gelöst und zentrifugiert. 2 wird mit 15 ml Pentan gefällt und im Vakuum getrocknet. Ausbeute: 163 mg (78%); Zersetzung ab 160 °C. IR (Nujol, cm⁻¹): 2112 s, 2052 s, 2028 vs, 2008 vs, 1940 sh. ¹H-NMR (CD₃NO₂): δ = 1.58 ppm (t, PMe₃, $J_{P-H} = 6.50 \text{ Hz}$); 1.74 (m, CH₂Os); 2.24 (m, CH₂Ru); 5.87 (s, C₆H₆). ¹³C-NMR (CD₃NO₂): δ = 13.60 ppm (t, OsC, $J_{C-P} = 5.33 \text{ Hz}$); 20.55 (t, PMe₃, $J_{C-P} = 17.49$ Hz); 23.48 (t, RuC, $J_{C-P} = 10.75$ Hz); 95.49 (s, C_6H_6); 172.66, 183.14 (OsCO). ³¹P-NMR (CD₃NO₂): $\delta = 5.96$ ppm (d, $J_{P-P} =$ 3.10 Hz). Anal. Gef.: C, 29.81; H, 4.68. C₃₂H₅₆F₁₂P₆O₄OsRu₂. Ber.: C, 29.32; H, 4.31%. Molmasse: 1310.96.

5.3.
$$[(\eta^6 - C_6 H_6) Ru(\mu - \eta^5 : \eta^7 - C_6 H_6) Re(CO)_5] BF_4$$
 (3)

Eine farblose Suspension aus 302 mg (0.7 mmol) $[(C_6H_6)_2Ru][BF_4]_2$ in 5 ml THF wird bei -70 °C mit einer Lösung (10 ml) von Na[Re(CO)₅], dargestellt aus 280 mg (0.43 mmol) $\text{Re}_2(\text{CO})_{10}$ versetzt. Das gelbe Reaktionsgemisch rührt man 45 min bei -78 °C. Dabei tritt eine langsame Klärung der Suspension ein. Das Lösungsmittel wird bei -10° C entfernt. Das Produkt löst man anschließend mit zweimal 8 ml CH₂Cl₂ heraus. Nach dem Einengen auf 3 ml fällt man 3 mit 15 ml Ether. Erneutes Umfällen aus CH₂Cl₂-Ether liefert 3 als gelbes Pulver, welches nach fünfstündiger Trocknung analysenrein vorliegt. Ausbeute: 403 mg (86%); Zersetzung ab 72 °C. IR (KBr, cm⁻¹): 2122 m, 2051 m, 1996 vs, br, 1877 s. ¹H-NMR (400 MHz, CD_2Cl_2): $\delta = 3.72 \text{ ppm}$ (ψt , 1H, 6-H); 4.10 (ψt , 2H, 1,5-H, ${}^{3}J_{1-6} = 5.9$ Hz); 4.97 (dd, 2H, 2,4-H, ${}^{3}J_{2-1} = 6.35$ Hz); 6.02 (s, C₆H₆): 6.66 (ψ t, 1H, 3-H, ${}^{3}J_{3-2} = 4.9$ Hz). ¹³C-NMR (100.4 MHz, CD₂Cl₂): $\delta = 14.91$ ppm (C-6);

56.38 (C-2,4); 83.73 (C-1,5); 85.92 (C-3); 88.95 (C₆H₆); 180.50 (Re–CO_{ax}); 184.49 (Re–CO_{äq}). Anal. Gef.: C, 30.94; H, 1.96. C₁₇H₁₂BF₄O₅ReRu. Ber.: C, 30.46; H, 1.80%. Molmasse: 670.36.

5.4. $[(\eta^6 - C_6 H_6)Ru(\mu - \eta^5; \eta^7 - C_6 H_6)FeCp(CO)_2]BF_4$ (4)

4 wird wie bei 3 beschrieben dargestellt. Man setzt hierbei 245 mg (0.57 mmol) $[(C_6H_6)_2Ru][BF_4]_2$ in 8 ml THF mit einer Na[CpFe(CO)₂]-Lösung um, die aus 120 mg (0.34 mmol) [CpFe(CO)₂]₂ durch Reduktion mit Na-Hg in 5 ml THF erhalten wird. Gründliches Waschen mit Ether führt zu einem orangefarbenen, instabilen Produkt. Ausbeute: 181 mg (61%); Zersetzung ab 45 °C. IR (KBr, cm⁻¹): 1995 s, 1933 s. ¹H-NMR (400 MHz, CD₂Cl₂): $\delta = 4.09$ ppm (ψ t, 2H, 1,5-H); 4.40 (ψ , 1H, 6-H); 4.60 (s, Cp); 4.99 (ψ t, 2H, 2,4-H, ³J₂₋₁ = 5.6 Hz); 6.08 (s, C₆H₆); 6.55 (ψ t, 1H, 3-H, ³J₃₋₂ = 5.1 Hz). Anal. Gef.: C, 42.60; H, 3.57. C₁₉H₁₇BF₄FeO₂Ru. Ber.: C, 43.80; H, 3.29%. Molmasse: 521.06.

5.5. $[(\eta^6 - C_6 H_6)Ru(\mu - \eta^5 : \eta^1 - C_6 H_5 Cl)Re(CO)_5]SO_3CF_3$ (5)

 $383 \text{ mg} (0.65 \text{ mmol}) [(C_6H_6)Ru(C_6H_5Cl)][SO_3CF_3]_2$ werden in 3 ml THF vorgelegt und bei -70 °C tropfenweise mit einer Lösung von Na[Re(CO)₅] versetzt. Diese wurde zuvor aus 280 mg (0.43 mmol) $\text{Re}_2(\text{CO})_{10}$ in 10 ml THF durch Reduktion mit Na-Hg zubereitet. Innerhalb von 5 min bildet sich eine klare, orangefarbene Lösung, die bei - 30 °C im Hochvakuum eingeengt wird. Der Rückstand wird bei -30°C zweimal mit 15 ml CH₂Cl₂ behandelt. Die gesammelten Extrakte werden auf 4 ml reduziert und bei -70°C mit 30 ml Ether versetzt. Der orangefarbene Niederschlag wird nach dem Zentrifugieren mit 15 ml Ether gewaschen und 5 h im Hochvakuum getrocknet. Ausbeute: 314 mg (63%); Zersetzung ab 45 °C. IR (CH_2Cl_2 , cm^{-1}): 2127 s, 2059 m, 2013 vs, br, 1917 m. ¹H-NMR (400 MHz, J_{6} -Aceton): $\delta = 4.31$ ppm (dd, 1H, 6-H, ${}^{3}J_{6-5} = 6.63$ Hz, ${}^{5}J_{6-4} = 1.42$ Hz); 4.73 (dt, 1H, 5-H, ${}^{3}J_{5-1} = 6.63$ Hz); 5.18 (dt, 1H, 4-H, ${}^{3}J_{4-3} = 4.88$ Hz, ${}^{3}J_{4-5} = 1.47$ Hz); 5.71 (dd, 1H, 2-H, ${}^{3}J_{2-3} = 5.87$ Hz); 6.36 (s, C₆H₆); 6.78 (ψdt, 1H, 3-H, ${}^{3}J_{3-4} = 4.88$ Hz). 13 C-NMR (100 4 MHz d Aceton): $\delta = 25.04$ ppm (C 6): 57.70 (100.4 MHz, d_6 -Aceton): $\delta = 25.04 \text{ ppm}$ (C-6); 57.70 (C-5); 80.09 (C-1); 80.60 (C-3); 82.16, 82.26 (C-2,4); 91.86 (C₆H₆); 182.87, 185.31 (Re-CO). Anal. Gef.: C, 27.09; H, 1.59. C₁₈H₁₁ClF₃O₈ReRuS. Ber.: C, 28.19; H, 1.45%. Molmasse: 767.07.

5.6. $[(\eta^6 - C_6 H_6)Ru(\mu - \eta^6 : \eta^1 - C_6 H_5)Re(CO)_5][BF_4]_2$ (6)

300 mg (0.65 mmol) $[(C_6H_6)Ru(C_6H_5Cl)][BF_4]_2$ werden wie bei **5** beschrieben mit der entsprechenden Menge Na[Re(CO)₅] zur Reaktion gebracht. Diesmal rührt man das Reaktionsgemisch noch 2h bei 0°C. Die weitere Aufarbeitung erfolgt wie bei **5**, wird aber bei Raumtemperatur durchgeführt. Man erhält schließlich ein gelbes Pulver, das in 5 ml Aceton gelöst und mit 15 ml Ether überschichtet wird. Nach zwei Tagen im Kühlschrank (-25°C) bilden sich gelbe Kristalle von **6**. Ausbeute: 285 mg (58%); Zersetzung ab 90°C. IR (Nujol, cm⁻¹): 2152 m, 2010 sh, 1996 vs, br. ¹H-NMR (400 MHz, d_6 -Aceton): $\delta = 6.82$ ppm (ψ t, 2H, *m*-H): 6.97 (ψ t, 1H, *p*-H, $^{3}J_{p-3m} = 6.35$ Hz); 7.12 (s, C₆H₆): 7.34 (d, 2H, *o*-H, $^{3}J_{o-m} = 5.86$ Hz). ¹³C-NMR (100.4 MHz, d_6 -Aceton): $\delta = 92.20$ ppm (*p*-C); 94.20 (*i*-C); 94.70 (C₆H₆); 95.10 (*o*-C); 107.85 (*m*-C); 181.93 (Re-CO). Anal. Gef.: C, 26.06; H, 1.73. C₁₇H₁₁B₂F₈O₅ReRu. Ber.: C, 27.00; H, 1.47%. Molmasse: 756.16.

5.7. $[(\eta^{6}-C_{6}H_{6})Ru(\mu-\eta^{6}:\eta^{1}-C_{6}H_{5})FeCp-(CO)_{2}][SO_{3}CF_{3}]_{2}(7)$

98 mg (0.28 mmol) $[CpFe(CO)_2]_2$ werden in 8 ml THF gelöst und durch Reduktion mit Na-Hg in das Carbonylmetallat überführt. Unterdessen werden 295 mg $(0.5 \text{ mmol}) [(C_6H_6)Ru(C_6H_5Cl)][TfO]_2 \text{ in } 5 \text{ ml } THF$ suspendiert und auf -70°C gekühlt. Zu dieser farblosen Suspension tropft man mit einer Teflonkanüle die Lösung des Anions. Die orangerote Lösung taut man anschließend langsam auf Raumtemperatur auf, rührt noch weitere 30 min und entfernt dann die flüchtigen Bestandteile des Reaktionsgemisches im Hochvakuum. Die Reinigung von 7 erfolgt wie bei 6 beschrieben. Ausbeute: 190 mg (52%): Zersetzung ab 76°C. IR (CH_2CI_2, cm^{-1}) : 2021 s, 1968 s. ¹H-NMR (400 MHz, d_6 -Aceton): $\delta = 5.44$ ppm (s, Cp); 6.69 (ψ t, 2H, m-H, ³J = 6.34 Hz); 6.90 (ψ t, 1H, p-H, ³J_{p-m} = 6.90 Hz); 7.06 (s, C₆H₆); 7.09 (d, 2H, o-H, ³J_{o-m} = 5.98 Hz). ¹³C-NMR (100.4 MHz, d_6 -Aceton): δ ppm = 88.82 (Cp); 91.37 (i-C); 93.67 (p-C); 93.85 (o-C); 94.82 (C₆H₆); 107.07 (*m*-C); 214.33 (Fe-CO). Anal. Gef.: C, 33.08; H, 2.63. C₂₁H₁₆F₆FeO₈RuS₂. Ber.: C, 34.49; H, 2.21%. Molmasse: 731.38.

5.8. $[(\eta^7 - C_8 H_9) Ru(\eta^4 - C_8 H_{12})]BF_4$ (8)

720 mg (2.28 mmol) $[(\eta^{6}-C_{8}H_{10})Ru(COD)]$ werden in 10 ml CH₂Cl₂ vorgelegt. Nach Zugabe von 754 mg (2.28 mmol) (C₆H₅)₃CBF₄ erhitzt man die dunkelgelbe Lösung 30 min unter Rückfluß. Die entstandene orange-braune Lösung wird auf Raumtemperatur abgekühlt, wobei das Produkt teilweise ausfällt. Das Lösungsmittel wird auf 4 ml eingeengt und mit 15 ml Ether versetzt. Nach dem Zentrifugieren löst man das braune Pulver in 15 ml Aceton (30 °C). Durch Abkühlen auf -30 °C erhält man über Nacht orangefarbene Plättchen. Durch Einengen der Mutterlauge kann eine zweite Fraktion von **8** erhalten werden. Ausbeute: 805 mg (88%); Zersetzung ab 119 °C. ¹H-NMR (400 MHz, CD₃NO₂): $\delta = 0.06$ ppm (m, 1H, 8_b-H); 1.67 (m, 2H); 2.01 (m, 2H); 2.41 (m, 1H); 2.60 (m, 2H); 2.83 (m, 1H); 3.08 (m, 1H); 3.19 (m, 1H); 4.03 (ψ t, 1H, 8_a-H); 4.23 (m, 1H); 4.87 (m, 1H, 10-H); 5.19 (m, 2H, 1.7-H); 5.82 (t, 1H, 4-H, ³J₄₋₅ = ³J₄₋₃ = 8.9 Hz); 6.18 (m, 4H, 2,3,5,6-H). ¹³C-NMR (100.4 MHz, CD₃NO₂): $\delta = 20.22$ ppm; 27.80; 35.71; 41.07; 45.29; 80.08; 88.49; 94.92; 96.13; 97.75; 99.91; 101.07. Anal. Gef.: C, 47.91; H, 5.12. C₁₆H₂₁BF₄Ru. Ber.: C, 47.90; H, 5.28%. Molmasse: 401.22.

5.9. $(\eta^4 - C_8 H_{12}) Ru(\mu - \eta^6; \eta^4 - C_8 H_9) Re(CO)_5$ (9)

240 mg (0.6 mmol) 8 werden in 5 ml THF suspendiert und auf -70 °C vorgekühlt. Dazu leitet man mittels einer Teflonkanüle eine Lösung von Na[Re(CO)₅] ein. Diese wurde zuvor aus 233 mg (0.36 mmol) $\text{Re}_2(\text{CO})_{10}$ durch Reduktion mit Na-Hg erhalten. Die resultierende orangefarbene Lösung wird nach 5 min auf 0 °C aufgetaut und vom Lösungsmittel befreit. Der zurückbleibende Feststoff wird dreimal mit je 10 ml Pentan (Raumtemperatur) extrahiert. Die vereinigten Pentanextrakte werden auf 4 ml eingeengt und 30 min bei -70 °C gerührt. Vom zitronengelben Feststoff wird die überstehende Pentanlösung abgehoben. Man wäscht noch einmal mit Pentan $(-70^{\circ}C)$ und trocknet das Produkt 5 h im Hochvakuum. Ausbeute: 261 mg (68%); Schmelzpunkt 116–119°C. IR (Pentan, cm⁻¹): 2115 m, 2005 vs, 1981 s, 1900 w. ¹H-NMR (400 MHz, CDCl₃): $\delta = -0.75 \text{ ppm}$ (m, 1H, 8_b-H); 0.92 (m, 1H, 8_a-H); 1.90 (m, 8H, 10-H); 2.68 (m, 4H, 9-H); 3.44 (m, 1H, 7-H); 4.08 (dd, 1H, 6-H, ${}^{3}J = 4.9$ Hz, ${}^{3}J = 8.79$ Hz); 4.33 (m, 1H, 1-H); 5.04 (m, 1H, 5-H); 5.24 (m, 1H, 2-H); 5.37 (ψ t, 1H, 4-H); 6.15 (ψ t, 1H, 3-H, ³J = ¹³C-NMR (100.4 MHz, CDCl₃): $\delta =$ 6.35 Hz). 24.07 ppm (C-7); 27.41 (C-8); 39.16 (C-10); 68.51 (C-9); 83.82 (C-6); 97.67 (C-1); 97.89 (C-2,5); 101.17, 102.78 (C-3,4); 188.10 (Re-CO). Anal. Gef.: C, 39.68; H, 3.46. C₂₁H₂₁O₅ReRu. Ber.: C, 39.37; H, 3.30%. Molmasse: 640.67.

5.10. $(\eta^4 - C_8 H_{12}) Ru(\mu - \eta^6; \eta^1 - C_8 C_9) FeCp(CO)_2$ (10)

Eine Lösung von 148 mg (0.42 mmol) $[CpFe(CO)_2]_2$ in 7 ml THF wird bei Raumtemperatur durch Rühren über Na-Hg in das entsprechende Carbonylmetallat überführt. Die rote Lösung wird auf -30 °C vorgekühlt und zu einer Suspension von 281 mg (0.7 mmol) **8** in 5 ml THF getropft (-70 °C). Die orangerote Lösung bringt man auf -30 °C, entfernt das Lösungsmittel im Vakuum und extrahiert wie bei **9** beschrieben mit Pentan, jedoch hier bei -30 °C. Die weitere Aufarbeitung liefert **10** als orangefarbenes, thermolabiles Pulver. Ausbeute: 158 mg (46%); Zersetzung ab 52 °C. IR (Pentan, cm⁻¹): 1997 s, 1945 s. ¹H-NMR (400 MHz, CDCl₃): δ = -0.32 ppm (m, 1H, 8_b-H); 1.35 (m, 1H, 8_a-H); 1.95 (m, 8H, 10-H); 2.35 (m, 4H, 9-H); 2.87 (m, 1H, 7-H); 3.93 (m, 2H, 1,6-H); 4.76 (s, 5H, Cp); 5.55 (m, 3H, 2,4,5-H); 6.00 (m, 1H, 3-H). ¹³C-NMR (100.4 MHz, CDCl₃): δ = 23.84 ppm (C-7); 26.05 (C-8); 39.50 (C-10); 69.14 (C-9); 83.45 (C-1,6); 86.03 (Cp); 97.28, 97.56 (C-2,5); 101.24, 102.37 (C-3,4). Anal. Gef.: C, 56.69; H, 5.61. C₂₃H₂₆FeO₂Ru. Ber.: C, 56.22; H, 5.33%. Molmasse: 491.38.

5.11. $(\eta^6 - C_8 H_{10}) Ru(\mu - \eta^4 : \eta^1 - C_8 H_{11}) Re(CO)_5$ (11)

281 mg (0.7 mmol) $[(\eta^5 - C_8 H_{11}) Ru(\eta^6 - C_8 H_{10})] BF_4$ werden in 5 ml THF bei - 78 °C mit einer äquimolaren Menge Na[Re(CO)₅] zur Reaktion gebracht. Die orangefarbene Reaktionsmischung wird 5 min bei -70 °C gerührt, anschließend auf 0°C aufgetaut und vom Lösungsmittel befreit. Den Rückstand behandelt man wie bei 9 beschrieben mit Pentan. 11 wird nach Waschen mit Pentan und Trocknen im Hochvakuum als orangefarbene feine Nadeln isoliert. Ausbeute: 288 mg (64%); Schmelzpunkt 125-127 °C. IR (Pentan, cm⁻¹): 2116 m, 2005 vs,br, 1978 s,br, 1900 w. ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.05$ ppm (m, 2H); 1.34 (m, 1H); 1.65 (m, 3H); 1.82 (m, 1H); 2.11 (m, 1H); 2.31 (m, 3H); 2.54 (m, 1H); 2.77 (m, 1H); 2.87 (m, 2H); 3.30, 3.56, 3.76, 4.03 (m, 4H, 9,10,13,14-H); 5.15 (m, 1H, 11-H); 5.26 (m, 1H, 12-H). ¹³C-NMR (100.4 MHz, CDCl₃): $\delta =$ 24.50 ppm, 25.97, 26.06, 27.04; 34.41; 39.90, 40.21; 41.00; 59.17, 59.24; 69.24; 73.58; 82.79; 88.64; 93.77; 97.42; 180.82 (Re-CO_{ax}); 186.69 (Re-CO_{äq}). Anal. Gef.: C, 39.00; H, 3.37. $C_{21}H_{21}O_5$ ReRu. Ber.: C, 39.37; H, 3.30%. Molmasse: 640.67.

5.12. $(\eta^4 - C_8 H_{10}) Ru(CO) (\mu - \eta^4 : \eta^1 - C_8 H_{11}) Re(CO)_5$ (12)

Eine Lösung von 160 mg (0.25 mmol) **11** in 5 ml Pentan wird langsam auf -25 °C abgekühlt. Nach 5 d können gelbe Kristalle von **12** geerntet werden. Durch Einengen der Mutterlauge auf etwa 2 ml und erneutes Stehenlassen bei -25 °C kann eine zweite Fraktion erhalten werden. Ausbeute: 72 mg (43%): Zersetzung ab 120 °C. IR (Pentan, cm⁻¹): 2118 m, 2007 vs, 1985 m, 1972 m, 1934 w. ¹H-NMR (400 MHz, CDCl₃): $\delta =$ 1.08 ppm (m, 2H); 1.38 (m, 1H); 1.78 (m, 3H); 2.13 (m, 2H); 2.30 (m, 2H); 2.46 (m, 2H); 2.95 (m, 2H); 3.15 (m, 3H); 3.46, 3.54, (m, 2H, 9,12-H); 4.40, 4.61 (m, 2H, 10,11-H). Anal. Gef.: C, 39.21; H, 2.97. C₂₂H₂₁O₆ReRu. Ber.: C, 39.52; H, 3.17%. Molmasse: 668.68.

Literaturverzeichnis

- [1] J. Milke, K. Sünkel und W. Beck, J. Organomet. Chem., im Druck.
- [2] W. Beck, B. Niemer und M. Wieser, Angew. Chem., 105 (1993) 969; Angew. Chem. Int. Ed. Engl., 32 (1993) 923.

- [3] S. Hüffer, M. Wieser, K. Polborn und W. Beck, J. Organomet. Chem., 481 (1994) 45.
- [4] S. Hüffer, M. Wieser, K. Polborn, K. Sünkel und W. Beck, Chem. Ber., 127 (1994) 1369.
- [5] H. Werner und R. Werner, Chem. Ber., 118 (1985) 4543; Chem. Ber., 115 (1982) 3766; 3781.
- [6] R. Werner und H. Werner, Chem. Ber., 116 (1983) 2074.
- [7] S.G. Davies, M.L.H. Green und D.M.P. Mingos, Tetrahedron, 34 (1978) 3047.
- [8] (a) W. Hieber, G. Braun und W. Beck, Chem. Ber., 93 (1960) 901. (b) W.J. Carter, J.W. Kelland, S.J. Okrasinski, K.E. Warner und J.R. Norton, Inorg. Chem., 21 (1982) 3955. F. L'Eplattenier und M.C. Pélichet, Helv. Chim. Acta, 53 (1970) 1091. (c) J.R. Norton, Acc. Chem. Res., 12 (1979) 139. H.W. Walker und P.C. Ford, J. Organomet. Chem., 214 (1981) C43.
- [9] D. Jones, L. Pratt und G. Wilkinson, J. Chem. Soc., (1962) 4458. M.A. Bennett und T.W. Matheson, J. Organomet. Chem., 175 (1979) 87. M.I. Rybinskaya, A.R. Kudinov und V.S. Kaganovich, J. Organomet. Chem., 246 (1983) 279. V.S. Kaganovich, A.R. Kudinov und M.I. Rybinskaya, J. Organomet. Chem., 323 (1987) 111. M.R.J. Elsegood, J.W. Steed und D.A. Tocher, J. Chem. Soc. Dalton Trans., (1992) 1797.
- [10] S.G. Davis, L.S. Gelfand und D.A. Sweigart, J. Chem. Soc. Chem. Commun., (1979) 762. P.J. Domaille, S.D. Ittel, J.P. Jesson und D.A. Sweigart, J. Organomet. Chem., 202 (1980) 191. Y.K. Chung, E.D. Honig und D.A. Sweigart, J. Organomet. Chem., 256 (1983) 277.
- [11] G.R. John, L.A.P. Kane-Maguire und D.A. Sweigart, J. Organomet. Chem., 120 (1976) C47. K.M. Al-Kathumi und L.A.P. Kane-Maguire, J. Organomet. Chem., 102 (1975) C4. C.A. Bunton, K. Lal und W.E. Watts, J. Organomet. Chem., 247 (1983) C14.
- [12] G.R. John und L.A.P. Kane-Maguire, J. Chem. Soc. Dalton Trans., (1979) 1196.
- [13] S.A. Cotton und F.A. Hart, The Heavy Transition Elements, Wiley, New York, 1975. H. Taube, Pure Appl. Chem., 51 (1979) 901.
- [14] (a) B. Nicholls und M.C. Whiting, J. Chem. Soc., (1959) 551. A.C. Knipe, S.J. McGuinness und W.E. Watts, J. Chem. Soc. Chem. Commun., (1979) 842. J.F. Bunnett und H. Hermann, J. Org. Chem., 36 (1971) 4081.
- [15] A.D. Hunter, Organometallics, 8 (1989) 1118. A.D. Hunter und A.B. Szigety, Organometallics, 8 (1989) 2670. A.D. Hunter und J.L. McLernon, Organometallics, 8 (1989) 2679. G.B. Richter-Addo und A.D. Hunter, Inorg. Chem., 28 (1989) 4063. R. Chukwu, A.D. Hunter und B.D. Santarsiero, Organometallics, 10 (1991) 2141. J.F. Helling und W.A. Hendrickson, J. Organomet. Chem., 168 (1979) 87.
- [16] J.A. Heppert, M.E. Thomas-Miller, P.N. Swepston und M.W. Extine, J. Chem. Soc. Chem. Commun., (1988) 280. J.A. Heppert, M.E. Thomas-Miller, D.M. Scherubel, F. Takusagawa, M.A. Morgenstern und M.R. Shaker, Organometallics, 8 (1989) 1199. J.A. Heppert, M.A. Morgenstern, D.M. Scherubel, F. Takusagawa und M.R. Shaker, Organometallics, 7 (1988) 1715.
- [17] B. Niemer, M. Steimann und W. Beck, Chem. Ber., 121 (1988) 1767.
- [18] G.B. Richter-Addo, A.D. Hunter und N. Wichrowska, Can. J. Chem., 68 (1990) 41.
- [19] B. Niemer, T. Weidmann und W. Beck, Z. Naturforsch. Teil B:, 47 (1992) 509.
- [20] A.S. Abd-El-Aziz, C.C. Lee, A. Piórko und R.G. Sutherland, J. Organomet. Chem., 348 (1988) 95.

- [21] M.A. Bennett und T.W. Matheson, J. Organomet. Chem., 175 (1979) 87.
- [22] (a) C.C. Neto und D.A. Sweigart, J. Chem. Soc. Chem. Commun., (1990) 1703. (b) D. Jones, L. Pratt und G. Wilkinson, J Chem. Soc., (1962) 4458.
- [23] M.I. Rybinskaya, V.S. Kaganovich und A.R. Kudinov, J Organomet. Chem., 235 (1982) 215.
- [24] P.L. Pauson und J.A. Segal, J. Chem. Soc. Dalton Trans., (1975) 1683.
- [25] P.L. Pauson und J.A. Segal, J. Chem. Soc. Dalton Trans., (1975) 1677.
- [26] M.F. Semmelhack, H.T. Hall, Jr., R. Farina, M. Yoshifuji, G. Clark, T. Bargar, K. Hirotsu und J. Clardy, J. Am. Chem. Soc., 101 (1979) 3535.
- [27] T. Weidmann, Diplomarbeit, München, 1988.
- [28] I.U. Khand, P.L. Pauson und W.E. Watts, J. Chem. Soc. C, (1969) 2024.
- [29] P.J.C. Walker und R.J. Mawby, J. Chem. Soc. Dalton Trans., (1973) 622.
- [30] A.W. Duff und K. Jonas, J. Am. Chem. Soc., 105 (1983) 5479.
- [31] W.M. Lamanna, W.B. Gleason und D. Britton, Organometallics, 6 (1987) 1583.
- [32] B. Niemer, Dissertation, LMU München, 1990, S. 99.
- [33] P. Pertici und G. Vitulli, J. Chem. Soc. Dalton Trans., (1980) 1961.
- [34] P. Pertici, G. Vitulli, R. Lazzaroni und P. Salvadori, J. Chem. Soc. Dalton Trans., (1982) 1019. M. Airoldi, G. Deganello, G. Dia und G. Gennaro, J. Organomet. Chem., 187 (1980) 391. P. Pertici, G.P. Simonelli, G. Vitulli, G. Deganello, P.L. Sandrini und A. Montovani, J. Chem. Soc. Chem. Commun., (1977) 132.
- [35] J. Müller und E.O. Fischer, J. Organomet. Chem., 5 (1966) 275.
 J. Müller und W. Groll, J. Organomet. Chem., 71 (1974) 257. J.
 Müller und B. Mertschenk, Chem. Ber., 105 (1972) 3346. J.
 Müller, C.G. Kreiter, B. Mertschenk und S. Schmitt, Chem.
 Ber., 108 (1975) 273.
- [36] J. Müller und S. Schmitt, J. Organomet. Chem., 97 (1975) 275.
- [37] A. Salzer und P. Bigler, Inorg. Chim. Acta, 48 (1981) 199.
- [38] J. Ashley-Smith, D.V. Howe, B.F.G. Johnson, J. Lewis und I.E. Ryder, J. Organomet. Chem., 82 (1974) 257.
- [39] G. Deganello, A. Mantovani, P.L. Sandrini, P. Pertici und G. Vitulli, J. Organomet. Chem., 135 (1977) 215.
- [40] E.O. Fischer, C. Palm und H.P. Fritz, Chem. Ber., 92 (1959) 2645.
- [41] W. McFarlane, L. Pratt und G. Wilkinson, J. Chem. Soc., (1963) 2162.
- [42] J. Müller, H.-O. Stühler, G. Huttner und K. Scherzer, Chem. Ber., 109 (1976) 1211. H. Schmid und M.L. Ziegler, Chem. Ber., 109 (1976) 132. M.R. Churchill und S.A. Bezman, Inorg. Chem., 12 (1973) 531. G. Huttner und V. Bejenke, Chem. Ber., 107 (1974) 156.
- [43] B. Niemer, J. Breimair, B. Wagner, K. Polborn und W. Beck, Chem. Ber., 124 (1991) 2227.
- [44] W. Hieber und G. Braun, Z. Naturforsch. Teil B:, 14 (1959)
 132. W. Hieber, G. Braun und W. Beck, Chem. Ber., 93 (1960)
 901. W. Beck und K. Raab, Inorg. Synth., 26 (1989) 106.
- [45] W.J. Carter, J.W. Kelland, S.J. Obrasinski, K.E. Warner und J.R. Norton, Inorg. Synth., 11 (1982) 3955.
- [46] W.P. Fehlhammer, W.A. Hermann und K. Öfele, in G. Brauer (Hrsg.), Handbuch der Präp. Anorg. Chem., Bd. III, Ferdinand Enke, Stuttgart, 3. Aufl., 1981, S. 1919; 1995; 2022.